
Singaporean Journal Scientific Research (SJSR)
ISSN: 2231 - 0061Vol.3, No.2 pp.155 - 157
©Singaporean Publishing Inc. 2010
available at: : http://www.iaaet.org/sjsr

AOP based Refactoring of Java Legacy System
E. Kodhai1, R. Ragha Sudha2, K. Reka3and A. Amudha4

1 Sri Manakula Vinayagar Engineering College/Information Technology, Puducherry, India
Email: kodhaiej@gmail.com

2,3,4Sri ManakulaVinayagar Engineering College/Information Technology, Puducherry, India
Email: raghasudha_r@yahoo.in, nila_selvi@yahoo.co.in, amudha3190@yahoo.com

Abstract—Maintenance and refactoring of legacy System
is difficult due to lack of necessary documents and source
codes. It is a great deal to generate valuable information
through refactoring. Our Objective is to develop a class
diagram and sequence diagram from the binary byte
code of a java legacy system and then to obtain coding
from the developed diagrams. To trace the system
behaviors, the pattern of Aspectj concept namely weaving
is applied to resolve the binary byte codes during runtime
of the system.

Index Terms—refactoring, binary byte code, class diagram,
sequence diagram, Aspect

1. INTRODUCTION

The software development cyclealways passes through
requirement analysis, design, coding, testing and runtime
maintenance. In fact, however, it needs many efforts so that
under the pressure of capital and time, the developers only
focus on coding (no proper comments) and neglect the
indispensable documents. When time passed and developer
alternated, many valuable documents and source codes are
lost while only the binary executable files left. Although
these binary files can implement the predefined function,
they cannot be updated with any modification or extension
for no documents and source codes support. Then this
software evolves into a “legacy system” and becomes more
and more unmaintainable and it will be left unused.

For a legacy system of Java with source codes, the
current mature IDEs (Integrated Development Environment),
such as Eclipse Modeling Framework [4] and NetBeans
UML Modeling [5], only provide the capability of reverse
engineering from source codes to documents or UML
diagrams. But for a legacy system with only binary
executable files, they can not provide program design
information without source code help. There are some Java
decompilers which can find the original source code to a
degree. But they also have some constraints and cannot get
the precise program structure. We utilize the techniques of
reflection and decompilation to generate the class diagrams
from binary bytecodes. Moreover, through weaving the stub
codes into original binary files to track the runtime
behaviors, we gracefully get the precise sequence diagrams
and class diagrams based on Aspectj concept. The class
diagram and sequence diagram of legacy system can be
generated automatically and very crucial for system
refactoring.

2. ASPECT-ORIENTED PROGRAMMING
Aspect-oriented programming (AOP) is an approach to

programming that allows global properties of a program to
determine how it is compiled into an executable program.
AOP can be used with object-oriented programming. Object
oriented programming has become mainstream over the last
years, having almost completely replaced the procedural
approach. One of the biggest advantages of object orientation
is that a software system can be seen as being built of a
collection of discrete classes. Each of these classes has a well
defined task; its responsibilities are clearly defined. In an OO
application, those classes collaborate to achieve the
application's overall goal. However, there are parts of a
system that cannot be viewed as being the responsibility of
only one class, they cross-cut the complete system and affect
parts of many classes. Examples might be locking in a
distributed application, exception handling, or logging
method calls. Of course, the code that handles these parts can
be added to each class separately, but that would violate the
principle that each class has well-defined responsibilities.
This is where AOP comes into play: AOP defines a new
program construct, called an aspect, which is used to capture
cross-cutting aspects of a software system in separate
program entities. The application classes keep their well-
defined responsibilities. Additionally, each aspect captures
cross-cutting behavior.

The components of AOP are advices/interceptors,
introductions, metadata, and pointcuts. An advice /
interceptor is an object that intercept the invocation of a
method before its execution. Interceptor embodies the
behavior to add or remove or replace the functionality of
infrastructure. Perfect pluggability without changes need for
business logic is provided by Interceptor. An introduction
adds states and functionality to the existing objects. Pointcuts
allows defining the location of interceptors and introductions
are to applied. Metadata provide information about class and
runtime system hints for treating the classes. For example,
AOP logging, monitoring of the code without instrumenting
with the code. For example, a method named Deposit
receives the arguments of Account NO and Amount, then
does the withdraw service. Before calling Deposit, a
necessary identity checking must be executed automatically.
Additionally, to audit this transaction, a whole logging
operations must be executed around (before and after)
Deposit service. Thus, any call of Deposit method is worthy
concerned, and this evolves into a joinpoint. A pointcut is a
joinpoint container whose joinpoints have the same or
similar features. A pointcut is defined as follows:

156

Published: Singaporean Publishing

AOP based Refactoring of Java Legacy System

PointcutDepositPoint(String AccountNO, double
Amount):Call(public void Deposit(..));
The locations of each call to the method Deposit are named
as DepositPoint.

 An advice is weaving the separated code with the
predefined pointcut to generate a composite service. The
weave type has three kinds: before, after and around. The
following is a before advice.
Before(String AccountNO, double Amount):

DepositPoint(AccountNO, Amount){
……..//Write any code you need
. ……..// These codes will be weaved into the entrance of

Deposit and be executed before the body of method. These
can also access current program context during runtime
execution.

}
For the after weave type, the separated codes is executed

after the pointcut method finished. As to another around
weave type, its function is equal to before type plus after
type.

The whole trigger procedure of AOP is that: When
program execution reaches a predefined method or variable,
if it gets into a joinpoint, the main thread will be suspended
and sequently invoke the ownership pointcut. According to
the definition of pointcut, the advice code will be executed
with current program context. After the advice code finished,
the main thread will resume and continue execution.

4. RELATED WORK

Object-oriented legacy system behavior is distributed
over many interacting objects, making it necessary to test for
complex collaboration scenarios. The existing system [2]
shows how to use the execution traces as a basis for
expressing tests. E.g.: Query library using SOUL, a logic
engine implemented in Smalltalk. The architecture of
TESTLOG consists of 5 top-down layers for SOUL and one
layer below Soul is for Smalltalk. The bottom layer
comprises an object-oriented model that represents the
execution trace. Each trace is stored as an object in the
Smalltalk image. At the next abstraction level TESTLOG
provides queries to access single events and states.

Data flow analysis was originally used as a technique for
code optimization in compilers. It [3, 8] has also been shown
to be a useful technique in other areas, such as performance
tuning, testing, and debugging. This study describes the
fundamentals of data flow analysis, and specifically dynamic
data flow analysis. The study concludes with a number of
requirements for new testing approaches using dynamic data
flow analysis. Dynamic data flow analysis is a method for
analyzing the sequence of actions on data in a program as it
is being run. Huang introduced tracing the data flow
anomalies through state transitions instead of sequences of
actions. When an action is applied on a variable, its state
follows transitions according to the state transition diagram.

AOP is used for instrumenting the system and for
gathering the data. This approach [6] works and is
conceptually very clean, but comes with a major quid pro
quo: integration of AOP tools with the build system proves
an important issue. This leads to the question of how to
reconcile the notion of modular reasoning within traditional

build systems with a programming paradigm which breaks
this notion.

Another approach [7] that relates on a first attempt to see
if aspect-oriented programming (AOP) and logic meta-
programming (LMP) can help with the revitalization of
legacy business software. By means of four realistic case
studies covering reverse engineering, restructuring and
integration, it discuss the applicability of the aspect-oriented
paradigm in the context of two major programming
languages for legacy environments: Cobol and C.

5. PROPOSED SYSTEM

We proposed a general approach to get class diagram
and runtime calling sequence diagram for legacy system of
Java without any support of source codes. Through Java
Reflection, we can easily get some basic information of
classes, including class name, member variables, member
functions/methods with parameter signature, super
class/interface name. This information can be used to rebuild
the class diagram, but it is not enough to get out the method
calling sequence diagram, because Java Reflection cannot
find out the detailed information hided in the internal body of
method. Through decompiler tools, we can get the readable
bytecodeinstructions.From the readable bytecode, one can
find the four bytecode instructions: invokevirtual,
invokespecial, invokestatic and invokeinterface. With the
help these four bytecode we can analyze the system easily.
The above techniques are grouped together and theapproach
is listed as follows.

A . Java Reflection:

By using Java Reflection, one can load the binary
bytecode and reflect the peripheral information of Java class,
including interface, super class, class modifiers, constructors,
methods, method signatures.

B . Java Decompiler:

Using Java decompiler tools to resolve the binary
bytecode, the preliminary calling sequence diagram can be
derived, whose most methods are affiliated to interface or
abstract classes, not concrete classes.

C . Joinpoint:

If a method of derived class overwrites the same method
of super class, set a joinpoint on any call to the method
overwritten. Then the joinpoint can be encapsulated as a
pointcut.

D . Pointcut:

For each pointcut, setup a new “before” advice to trace
the real runtime information of Java objects. The code of
joinpoint, pointcut and advice can be written into a single
aspect file.

E . Aspect Weaver:

Weave the aspect file into the binary class bytecode
during legacy system runtime and trace the real calling
sequence.Finally analyze to the trace log, adapt the
preliminary result of Java Decompiler and generate the
calling sequence diagram automatically. Through bytecode

157

Published: Singaporean Publishing

AOP based Refactoring of Java Legacy System

analysis, one can get the class diagram and sequence diagram
of the source code.

The system architecture for our proposed system is
given below which shows how we are able to generate class
diagrams and sequence diagrams from the binary byte code.

Figure 1. System Architecture

This will ensure the software maintenance in a better
manner. If we arrived at class diagrams and sequence
diagrams then with that help we can go for design, analysis,
source code, implementation and finally maintenance.

5. CONCLUSION

Obtaining valuable information from the legacy system
by refactoring it and without any source code support seems
very difficult in reverse engineering. In this paper, based on
the techniques of bytecode analysis and aspect-oriented
programming, the class diagram and sequence diagram are
automatically generated from Java legacy system. And with
the help of those diagrams, the source code of a java legacy
system is generated. This approach is useful in software
maintenance, system reengineering and refactoring.

REFERENCES
[1] Liangyu Chen, Jianlin Wang, Ming Xu,

ZhenbingZeng,“Reengineering of java legacy based on
aspect – oriented programming”, in Second International
Workshop onEducation Technology and Computer
Science, 2010.Besselfunctions,Phil. Trans. Roy. Soc.
London, vol. A247, pp.529–551, April 1955.

[2] S.Ducasse, T.Girba, R.Wuyts, “Object-oriented legacy
system trace based logic testing”, in Proceedings of the
Conference on Software Maintenance and
Reengineering (CSMR2006), 2006.

[3] A.Cain, J. Schneider, D.Grant and T.Chen, “Runtime
Data Analysis for Java Programs”, Proceedings of 1st
workshop on advancing the state of-the-art in runtime-
inspection (ECOOP2003), July, 2003.

[4] Eclipse Project, http://www.eclipse.org/.
[5] NetBeans Project, http://www.netbeans.org/.

[6] B.Adams, K.Schutter, A.Zaidman, S.Demeyer, H.Tromp

and W.Meuter, “Using aspect orientation in legacy

environments for reverse engineering using dynamic
analysis”—An industrial experience report, The Journal
of Systems and Software”, 82:668-684, 2009.

[7] K.Schutter, B.Adams, “Aspect-orientation for
revitalising legacy business software”. Electronic Notes
in Theoretical Computer Science 166 (1),63-80,2007.

[8] T. Systa, “Static and dynamic reverse engineering
techniques for Java software systems”, Ph.D. Thesis,
University of Tampere, Finland, 2000.

Binary Bytecode

Java Legacy System

Java Reflection

Java Decompiler

Sta tic Information Dynamic Information

Aspectj

Class Diagram Sequence Diagram

Java Decompiler

